The Use of Mineral Trioxide Aggregate to Repair Iatrogenic Perforations

Perforations are pathologic or iatrogenic communications between the root canal system and the attachment apparatus. The clinician must be particularly concerned about avoiding perforations of the tooth during endodontic therapy, since a perforation will necessitate additional treatment. If a perforation occurs, the tooth does not necessarily require surgery, intentional re-plantation, or extraction; in fact, it can be treated successfully in a conservative manner and continue to function as it did before the perforation. Today, there is no reason to believe that the tooth will be lost prematurely because of this complication.

An inflammatory reaction is established in the surrounding periodontium at the perforation site. This is due both to mechanical trauma and to the introduction of microbially derived substances that inevitably accompany the perforation. The perforation creates a portal of exit in the root canal system. Once identified, it must be sealed as quickly as possible, since periodontal trauma and the introduction of microbially derived substances that inevitably accompany the perforation. The perforation

creates a portal of exit in the root canal system. Once identified, it must be sealed as quickly as possible, since periodontal involvement arising from the perforation can become irreversible with time.

Treating a perforation often requires a multidisciplinary approach in order to establish the appropriate treatment plan. The decision must be made either to extract the tooth or direct efforts toward nonsurgical retreatment, surgical correction, or both. When evaluating a perforated tooth, 4 variables should be considered: level, location, size and shape, and time.\(^1\)

1. **Level.** Perforations can be considered to occur in the coronal, middle, or apical one third of the tooth. The prognosis of radicular perforations of the apical and middle third is much better than perforations of the coronal third or of the pulp chamber floor of multirooted teeth.\(^2\)

2. **Location.** Perforations occur circumferentially on the buccal, lingual, mesial, or distal aspects of the roots. This is an important consideration if surgical access is considered, while it is not as important in the case of nonsurgical retreatment.

3. **Size and shape.** The dimension and shape of the perforation primarily influence the establishment of a good seal. The larger the bur causing the perforation, the bigger the area to seal. Furthermore, lateral perforations are never round, but are elliptical in shape, since the bur meets the canal wall at a 45° angle. Finally, the perforating cavity has no taper, and this makes it difficult to establish a good apical seal without disturbing the surrounding periodontium.

4. **Time.** As stated, perforations create an inflammatory reaction in the adjacent tissues, and consequently a loss of attachment. Therefore, to discourage further loss of attachment and periodontal breakdown, perforations should be sealed as soon as possible, preferably during the same appointment they occur.

PROGNOSIS

The prognosis of perforations depends on many factors, including their level (coronal, middle, or apical one third), location (buccal, palatal, mesial, or distal), size (small or large), and time interval between the perforation and obturation. Further, the prognosis depends on the material used to repair the defect, whether there is concomitant bacterial infection, and whether there is overfilling resulting in extrusion of the repair material.

Level

As previously noted, the literature concludes that perforations of the coronal one third and of the pulp chamber floor have a less favorable prognosis because of their vicinity to the gingival crevice.\(^1,3,7\) If an adequate amount of connective tissue and bone remain coronal to the defect, there is less chance that permanent periodontal damage will occur, and healing is facilitated. For this reason, the prognosis is better in the case of a perforation of the pulpal floor in long-trunk molars. (“Trunk” is the distance between the cementoenamel junction and the forcussion).

Location

Location of the perforation is not important if the perforation can be treated nonsurgically. On the other hand, it becomes critical if surgical access is the treatment of choice. Without access, extraction of the tooth is indicated.

Size

As stated, a larger perforation with no taper and an ovoid opening makes treatment very challenging. It becomes more and more difficult to establish a complete seal without overfilling.

continued on page ##
Time
Perforations result in inflammatory reactions with resultant loss of attachment. Loss of attachment can lead to the development of combined endodontic/periodontal lesions that often require a surgical procedure, and the result is a poorer prognosis. For this reason, the time interval between the perforation and treatment must be as brief as possible; in fact, it is strongly recommended that these defects be obturated immediately after the appointment at which the perforation occurs. This helps prevent bacterial contamination and thus a lesion of the adjacent tissue in the lingual canal. On the mesial aspect of the perforation the orifice of the buccal canal is visible.

Materials and Techniques
When repairing a perforation, visualization is extremely important and is achieved by illumination and magnification. The operating microscope has dramatically improved the predictability of nonsurgical retreatment.8

Beavers, et al9 have demonstrated that if the lesions heal in association with a biocompatible material, and especially in the absence of bacterial contamination, complete healing of the defect may occur following perforation of the bifurcation or with lateral perforations near the gingival sulcus, with no apical migration of the epithelial attachment.

Many different materials have been suggested to aid in the healing of a perforation, including Cavit (3M ESPE),1 amalgam,3,10 calcium hydroxide,11 and gutta-percha.12 Regardless of the material used, clinicians who seek to repair perforations have always had two challenges.13 The first challenge is to establish hemostasis and avoid overfilling, which can be accomplished by placing a barrier that conforms to the furcal or root surface. Selected barriers should be biocompatible, absorbable, and supportive of new bone growth, and are placed nonsurgically through the access cavity into a 3-walled osseous defect. The internal matrix provides a barrier to control the placement of a restorative material; the barriers that are currently employed are CollaCote (Integra LifeSciences), freeze-dried bone, tricalcium phosphate, and calcium phosphate.

The second challenge to successfully repair a perforation is to select a restorative material that is easy to use, seals well, is not resorbable, is aesthetically pleasing, and is biocompatible and supports new tissue formation. The materials commonly employed to repair perforations include amalgam (decreasing in popularity), SuperEBA resin cement (Harry J. Bosworth), composite bonded material, and mineral trioxide aggregate or MTA (ProRoot MTA [DENTSPLY Tulsa Dental]).

Currently, all of the restorative materials used, except MTA, require a dry field to ensure a proper seal. Barrier material must be selected that produces a dry preparation, contains the placement of the restorative material, and prevents overfilling. The use of MTA does not require barrier material.

PERTURAM REPAIR WITH MTA
The prognosis for a perforation has improved with the use of the operating microscope14 and with the availability of MTA to seal the defects.15 MTA was developed by Torabinejad and colleagues.16 It is an endodontic cement that is extremely biocompatible, hydrophilic, and capable of stimulating the healing processes and osteogenesis.17,18 MTA is a powder that consists of fine trioxides and other hydrophilic particles that set in the presence of moisture. Hydration of the powder results in a colloidal gel that solidifies to a hard structure in about 4 hours. This cement is different from all other materials used because of its biocompatibility, its antibacterial activity, its marginal adaptation and sealing properties, and of primary importance because it is hydrophilic and therefore resistant to moisture.

Concerning biocompatibility,19,20 Koh, et al21,22 and Pitt Ford, et al23 demonstrated that MTA was not cytotoxic for fibroblasts or osteoblasts, and promoted the formation of dentin bridges when used in direct pulp capping.24 Other studies25,26−29 demonstrated the formation of cementum, periodontal ligament, and bone adjacent to MTA when used to seal perforations and as a retrofilling material in surgical endodontic procedures.30

Concerning antibacterial activity,31,32 Torabinejad, et al33 have demonstrated that MTA is superior to amalgam, zinc-oxide eugenol cement, and SuperEBA. Nonetheless, its spectrum of activity is limited, and if a bacterial contamination is suspected, it is advisable to use calcium hydroxide before MTA.33 Marginal adaptation and sealing properties of MTA are far superior to those of amalgam, IRM, and SuperEBA.27,30−34−39 [Author: who manufactures IRM?]

As noted, the characteristic that distinguishes MTA from all the other materials used to repair iatrogenic perforations is that it is hydrophilic. Materials used to repair perforations, seal the retro-preparation in surgical endodontics, close open apices, or protect the pulp in direct pulp cappings are inevitably in contact with blood and other tissue fluids. MTA is the only material that is not affected by moisture or blood contamination.26 On the other hand, MTA sets only in contact with moisture. Due to the above-mentioned characteristics and primarily because it is hydrophilic, MTA can be considered the ideal material to seal perforations40−41−57 (Figures 1 and 2).

The following is the operative sequence to treat a perforation of the root or of the floor of the pulp chamber:

At the patient’s first visit, (1) isolate the operative field with rubber dam, (2) clean the perforation site; in case of bacterial contamination, medicate with calcium hydroxide for one week, (3) apply a 2- to 3-mm-thick layer of MTA; radiograph to...
verify the correct positioning of the material, (4) apply a small wet cotton pellet in contact with MTA, and (5) place temporary cement.

At the second visit (after 24 hours), remove the temporary cement to check if the MTA has set and then complete therapy.

As far as the operative sequence is concerned, it is important to differentiate between a perforation that has the configuration of a cavity with 4 walls having no association with the root canal space (eg, the perforation of the pulp chamber floor in a molar), and one that is a strip perforation inside the canal space. If the perforation is in the floor of the pulp chamber and therefore is a cavity completely independent of the canal orifices, the situation is different from a perforation that is in the middle third of a root and is caused by stripping due to excessive enlargement of the root canal. In the latter case, the perforation is not independent from the root canal but is inside the root canal (in a root canal wall). It is not a cavity with 4 walls, but is rather a thinning of the root.

In the first instance, it is advisable to seal the perforation before obturating the root canals (Figures 3 to 8). This approach is easier and saves time. Since one consideration for prognosis is the time interval between perforation and treatment, the longer treatment is delayed, the more likely the perforation site will be contaminated, with resultant periodontal involvement. After positioning small amounts of gutta-percha at the orifices of the canals using the Obtura III (Obtura Spartan), or in a retreatment case before removing the previous obturating material to prevent blockage of the canals with MTA, MTA is used to completely fill the perforation. Once the complete set of the material is verified at the second visit, the cleaning, shaping, and obturation of the root canal system is completed in the standard fashion.

In the case of a strip perforation due to a thinning of the root dentinal wall, it is extremely difficult to repair the perforation site with MTA before obturating the root canal without blocking the canal itself with MTA. Therefore, it is advisable to obturate the canal space apical to the perforation first, and then to repair the perforation using MTA to seal the perforation site and fill the entire coronal portion of the root canal, to the orifice (Figures 9 to 20). In order to do this, it is necessary to measure the level of the perforation using the operating microscope and then to partially cut or score the prefitted gutta-percha cone just apical to that level. Once it is introduced into the root canal, the gutta-percha cone is digitally rotated, separating it into 2 pieces: the coronal fragment pulls away, leaving the apical fragment in the canal, which is just apical to the perforation. After compaction of the apical gutta-percha cone, the canal is filled with MTA to the orifice, sealing the perforation site.

Criteria for Determining Success

To achieve success following treatment of a perforation, the treated tooth must meet the following requirements:

- absence of symptoms, such as spontaneous pain, or pain on palpation or percussion
- absence of excessive mobility
- absence of a communication between the perforation and the gingival crevice
- absence of a fistula
- the tooth must be functional
- absence of radiographic signs of demineralization of the bone adjacent to the perforation
- thickness of the periodontal ligament adjacent to the obturating material should be no more than double the thickness of the surrounding ligament.

If only one of these criteria cannot be met, therapy cannot be considered as a success.

Conclusion

Perforations represent pathologic or iatrogenic communications between the root canal system and the periodontal attachment apparatus. Treating a perforation may often require a multidisciplinary approach in order to establish an appropriate treatment plan, and the clinicians must decide whether to extract the tooth or treat it with a nonsurgical and/or surgical approach.

The prognosis of perforated teeth is better today than it was in the past, and this is due to the improved vision provided by the operating microscope as well as the use of biocompatible materials such as MTA. With this approach, perforations can be more predictably repaired without surgery, thus reducing the need for invasive and more costly procedures.

References

Dr. Castellucci graduated in medicine at the University of Florence (Italy) in 1973 and specialized in dentistry at the same university in 1977. As well as maintaining a practice limited to endodontics in Florence, he is past president of the Italian Endodontic Society, past president of the Federation of Endodontic Associations, an active member of the European Society of Endodontontology, an active member of the American Association of Endodontists, and a visiting professor of endodontics at the University of Florence Dental School. He is editor of The Textbook of Endodontics. He is an international lecturer, he is the author of the text Endodontics, which is now available in English. He can be reached at castellucci@aids.it.
Learning Objectives

After reading this article, the individual will learn:

- the prognosis of iatrogenic perforations, and
- techniques and materials for treating perforations.

1. Once a perforation is identified, ____.
 a. it must be sealed as quickly as possible
 b. it should be monitored radiographically for 3 to 6 months
 c. the tooth should be immediately extracted
 d. surgical intervention is the only treatment option

2. Variables for evaluating a perforated tooth include ____.
 a. level of the perforation
 b. location of the perforation
 c. size and shape of the perforation
 d. all of the above

3. Which of the following perforations has the worst prognosis?
 a. coronal third
 b. radicular
 c. middle third
 d. both b and c

4. Location of a perforation ____.
 a. is important if it can be treated nonsurgically
 b. is not important if it can be treated nonsurgically
 c. is important if it is treated surgically
 d. both a and c

5. The following restorative material does not require a dry field to ensure proper seal of a perforation ____.
 a. amalgam
 b. MTA
 c. SuperEBA resin cement
 d. composite bonded material

6. Mineral trioxide aggregate (MTA) is ____.
 a. hydrophobic
 b. hydrophilic
 c. not biocompatible
 d. not antibacterial

7. Hydration of MTA powder results in a colloidal gel that solidifies to a hard structure in ____.
 a. about 1 hour
 b. about 2 hours
 c. about 3 hours
 d. about 4 hours

8. The following statement is TRUE:
 a. MTA is affected by moisture or blood contamination.
 b. If bacterial contamination is suspected, it is advisable to use calcium hydroxide before MTA.
 c. The antibacterial spectrum of activity of MTA is very broad.
 d. For a strip perforation inside the root canal space, the perforation should be sealed before obturating the canals.

Answer Sheet for Test 105.#

Please evaluate this month’s article.
Poor = 0 to Excellent = 5

Test 105.#

Course objectives were achieved. __________

Content was useful and benefited your clinical practice. __________

Review questions were clear and relevant to the editorial. __________

Illustrations and photographs were clear and relevant. __________

Written presentation was informative and concise. __________

How much time did you spend reading the article & completing the test? __________

Columbia University College of Dental Medicine provides peer review and issuance of Continuing Education credit.

SPECIAL annual tuition available for 12-month (24 CE) and 6-month (12 CE) programs, or you may pay $20 for each individual CE credit.

* Only $10 per credit with purchase of 1-year enrollment.

September CE Test Deadline is February 28, 2009